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Abstract. We calculate the electromagnetic (EM) form factors of the pseudoscalar mesons in the light-
front framework. Specifically, these form factors are directly extracted from the relevant matrix elements,
instead of choosing the Breit frame. The results show that the charge radius of the meson is related to both
the first and second longitudinal momentum square derivatives of the momentum distribution function.
The static properties of the EM form factors and the heavy quark symmetry of the charge radii are checked
analytically in the heavy quark limit. In addition, we use the Gaussian-type wavefunction to obtain the
numerical results.

1 Introduction

The understanding of the electromagnetic (EM) proper-
ties of hadrons is an important topic, and the EM form
factors which are calculated using non-perturbative meth-
ods are a useful tool for this purpose. There have been nu-
merous experimental [1–7] and theoretical studies [8–13]
of the EM form factors of the light pseudoscalar mesons (π
and K). However, due to difficulties in the experiments,
to the EM form factors of light vector mesons (ρ and
K∗) have fewer investigations been devoted than to their
pseudoscalar counterparts [14,15], even though they could
provide much information about the bound-state dynam-
ics. As for the EM form factors of heavy mesons (which
contain one heavy quark), there are much fewer studies
than for the light ones. In the heavy hadron investigation,
however, the heavy quark symmetry (HQS) [16] is a fun-
damental and model-independent property. In this work,
we will study the EM form factors of the light and heavy
pseudoscalar mesons in the light-front framework. We will
also check whether HQS is satisfied or not for these EM
properties of the heavy mesons.

The light-front quark model (LFQM) is the only rel-
ativistic quark model in which a consistent and fully rel-
ativistic treatment of quark spins and the center-of-mass
motion can be carried out. Thus it has been applied in the
past to calculate various form factors [16–22]. This model
has many advantages. For example, the light-front wave-
function is manifestly boost invariant as it is expressed
in terms of the momentum fraction variables (in the “+”
component) in analogy to the parton distributions in the
infinite momentum frame. Moreover, hadron spin can also
be relativistically constructed by using the so-called
Melosh rotation [24]. The kinematic subgroup of the light-
front formalism has the maximum number of interaction-
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free generators including the boost operator which de-
scribes the center-of-mass motion of the bound state (for
a review of the light-front dynamics and light-front QCD,
see [25]).

This paper is organized as follows. In Sect. 2, the ba-
sic theoretical formalism is given and the decay constant
and the EM form factors are derived for the pseudoscalar
mesons. In Sect. 3, we take the heavy quark limit to check
whether HQS is satisfied or not. In Sect. 4, numerical re-
sults are obtained by choosing the Gaussian-type wave-
function. Finally, our conclusion is given in Sect. 5.

2 Framework

A meson bound state consisting of a quark q1 and an an-
tiquark q̄2 with a total momentum P and spin S can be
written as

|M(P, S, Sz)〉 =
∫

{d3p1}{d3p2}2(2π)3δ3(P̃ − p̃1 − p̃2)

×
∑

λ1,λ2

ΨSSz (p̃1, p̃2, λ1, λ2)|q1(p1, λ1)q̄2(p2, λ2)〉, (1)

where p1 and p2 are the on-mass-shell light-front momenta,

p̃ = (p+, p⊥), p⊥ = (p1, p2), p− =
m2 + p2

⊥
p+ , (2)

and

{d3p} ≡ dp+d2p⊥
2(2π)3

,

|q(p1, λ1)q̄(p2, λ2)〉 = b†λ1
(p1)d

†
λ2
(p2)|0〉,

{bλ′(p′), b†λ(p)} = {dλ′(p′), d†
λ(p)}

= 2(2π)3δ3(p̃′ − p̃)δλ′λ. (3)
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In terms of the light-front relative momentum variables
(x, k⊥) defined by

p+
1 = (1 − x)P+, p+

2 = xP+,

p1⊥ = (1 − x)P⊥ + k⊥, p2⊥ = xP⊥ − k⊥, (4)

the momentum-space wavefunction ΨSSz can be expressed
as

ΨSSz (p̃1, p̃2, λ1, λ2) = RSSz

λ1λ2
(x, k⊥)φ(x, k⊥), (5)

where φ(x, k⊥) describes the momentum distribution of
the constituents in the bound state, and RSSz

λ1λ2
constructs

a state of definite spin (S, Sz) out of light-front helicity
(λ1, λ2) eigenstates. Explicitly,

RSSz

λ1λ2
(x, k⊥) =

∑
s1,s2

〈λ1|R†
M(1 − x, k⊥,m1)|s1〉 (6)

× 〈λ2|R†
M(x,−k⊥,m2)|s2〉〈12s1;

1
2
s2|S, Sz〉,

where |si〉 are the usual Pauli spinors, and RM is the
Melosh transformation operator [24]:

RM(x, k⊥,mi) =
mi + xM0 + iσ · k⊥ × n√

(mi + xM0)2 + k2
⊥

, (7)

with n = (0, 0, 1), a unit vector in the z-direction, and

M2
0 =

m2
1 + k2

⊥
(1 − x)

+
m2

2 + k2
⊥

x
. (8)

In practice, it is more convenient to use the covariant form
for RSSz

λ1λ2
[18]:

RSSz

λ1λ2
(x, k⊥) =

√
p+
1 p

+
2√

2M̃0
ū(p1, λ1)Γv(p2, λ2), (9)

where

M̃0 ≡
√
M2

0 − (m1 −m2)2,

Γ = γ5 (pseudoscalar, S = 0).

We normalize the meson state by

〈M(P ′, S′, S′
z)|M(P, S, Sz)〉

= 2(2π)3P+δ3(P̃ ′ − P̃ )δS′SδS′
zSz , (10)

so that the normalization condition of the momentum dis-
tribution function can be obtained:∫

{dx}|φ(x, k⊥)|2 = 1, (11)

where

{dx} ≡ dxd2k⊥
2(2π)3

.

In principle, the momentum distribution amplitude φ(x,
k⊥) can be obtained by solving the light-front QCD bound-
state equation [25]. However, before such first-principle

solutions are available, we will have to be content with
phenomenological amplitudes. One example that has of-
ten been used in the literature for heavy mesons is the
Gaussian-type wavefunction,

φ(x, k⊥)G = N
√

dkz

dx
exp

(
− k2

2ω2

)
, (12)

where N = 4(π/ω2)3/4 and kz is for the internal momen-
tum k = (k⊥, kz), defined through

1 − x =
e1 − kz

e1 + e2
, x =

e2 + kz

e1 + e2
, (13)

with ei = (m2
i + k2)1/2. We then have

M0 = e1 + e2, kz =
xM0

2
− m2

2 + k2
⊥

2xM0
, (14)

and
dkz

dx
=

e1e2
x(1 − x)M0

, (15)

which is the Jacobian of the transformation from (x, k⊥)
to k.

2.1 Decay constants

The decay constant of a pseudoscalar meson P (q1q̄2) is
defined by

〈0|Aµ|P (p)〉 = ifP pµ, (16)

where Aµ is the axial-vector current. It can be evaluated
using the light-front wavefunction given by (12):

〈0|q̄2γ+γ5q1|P 〉 =
∫

{d3p1}{d3p2}2(2π)3

× δ3(p̃− p̃1 − p̃2)φP (x, k⊥)R00
λ1λ2

(x, k⊥)

× 〈0|q̄2γ+γ5q1|q1q̄2〉. (17)

Since M̃0(x(1−x))1/2 = (A2+k2
⊥)

1/2, it is straightforward
to show that

fP = 4
√
3√
2

∫
{dx} φP (x, k⊥)√A2 + k2

⊥
A, (18)

where A = m1x+m2(1− x). Note that the factor 31/2 in
(18) arises from the color factor implicitly in the meson
wavefunction.

2.2 Electromagnetic form factors

The EM form factor of a pseudoscalar meson P , FP (Q2),
is determined by the scattering of one virtual photon and
one meson. It describes the deviation from the point-like
structure of the meson, and is a function of the square
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of the photon momentum Q. Here we consider the mo-
mentum of the virtual photon in space-like region, so it is
always possible to orient the axes in such a manner that
Q+ = 0. Thus the EM form factor is determined by the
matrix element

〈P (P ′)|J+|P (P )〉 = eFP (Q2)(P + P ′)+, (19)

where Jµ = q̄eqeγ
µq is the vector current, eq is the charge

of quark q in the unit e, and Q2 = −(P ′ − P )2 ≥ 0. With
LFQM, FP can be extracted by (19)

FP (Q2) = eq1

∫
{dx} φP (x, k⊥)√A2 + k2

⊥

φP ′(x, k′
⊥)√A2 + k′2
⊥

× [A2 + k⊥ · k′
⊥
]

+eq̄2

∫
{dx} φP (x, k⊥)√A2 + k2

⊥

φP ′(x, k′′
⊥)√A2 + k′′2
⊥

× [A2 + k⊥ · k′′
⊥
]
, (20)

where k′
⊥ = k⊥+xQ⊥, k′′

⊥ = k⊥−(1−x)Q⊥. From (6), (7),
and (9), it is understandable that the term (A2 + k2

⊥)
1/2

comes from the Melosh transformation. After fixing the
parameters which appear in the wavefunction, (20) can be
used to fit the experimental data. But this is not the whole
story. We consider the term φ̃P ≡ φP (x, k⊥)/(A2 + k2

⊥)
1/2

and take the Tayor expansion around k2
⊥:

φ̃P ′(k′2
⊥) = φ̃P ′(k2

⊥) +
dφ̃P ′

dk2
⊥

∣∣∣∣∣
Q⊥=0

(k′2
⊥ − k2

⊥)

+
d2φ̃P ′

2(dk2
⊥)2

∣∣∣∣∣
Q⊥=0

(k′2
⊥ − k2

⊥)
2 + ... (21)

Then, by using the identity∫
d2k⊥(k⊥ ·A⊥)(k⊥ ·B⊥) =

1
2

∫
d2k⊥k2

⊥A⊥ ·B⊥, (22)

we can rewrite (20) as

FP (Q2) = (eq1 + eq̄2)

+Q2
∫

{dx}φ2
P (x, k⊥)[x2eq1 + (1 − x)2eq̄2 ]

×
(
ΘP

A2 + 2k2
⊥

A2 + k2
⊥

+ Θ̃P k
2
⊥

)
+ O(Q4), (23)

where

ΘM =
1

φ̃M

(
dφ̃M

dk2
⊥

)
, Θ̃M =

1

φ̃M

(
d2φ̃M

(dk2
⊥)2

)
. (24)

From (23), the static property FP (0) = eP is quite eas-
ily checked. The mean square radius of the meson P is
determined from the slope of FP at Q2 = 0:

〈r2〉P ≡ −6
dFP (Q2)
dQ2

∣∣∣∣∣
Q2=0

. (25)

It should be realized that the size and the density of
a hadron depend on the probe. For an electromagnetic
probe, it is the electric charge radius that is obtained.
From the experimental view, 〈r2〉P cannot be measured
directly and is obtained by fitting the data on FP to a
pole or dipole form. Here we easily obtained the equation
for 〈r2〉P :

〈r2〉P = 〈r2〉q1 + 〈r2〉q̄2

= eq1

{
−6
∫

{dx}x2φ̃P

[
(A2 + 2k2

⊥)
d

dk2
⊥

+ (A2 + k2
⊥)k

2
⊥

(
d

dk2
⊥

)2
]
φ̃P

}

+ eq̄2

{
−6
∫

{dx}(1 − x)2φ̃P

[
(A2 + 2k2

⊥)
d

dk2
⊥

+ (A2 + k2
⊥)k

2
⊥

(
d

dk2
⊥

)2
]
φ̃P

}
. (26)

From (26), it is worthwhile to mention that, first, the mean
square radius of a meson is the sum of the contributions
of the valence quarks. Second, 〈r2〉 is related to the first
and second longitudinal momentum square derivatives of
φ̃ which contain the Melosh transformation effect.

3 Heavy quark limit

In this section, we will check the HQS among the charge
radii by taking the heavy quark limit. To proceed, we
first investigate the heavy quark limit behavior of the
wavefunction. Since the x in the normalization condition
(10) is the longitudinal momentum fraction carried by the
light antiquark, the meson wavefunction should be sharply
peaked near x ∼ ΛQCD/mQ. It is thus clear that only
terms of the form “mQx” survive in the wavefunction as
mQ → ∞; that is, mQx is independent of mQ in the
mQ → ∞ limit. In the mQ → ∞ limit, we must rewrite
(10) in the mQ-independent form∫ ∞

0
dX

∫
d2k⊥
2(2π)3

|Φ(X, k⊥)|2 = 1, (27)

where X ≡ mQx and [26]

Φ(X, k⊥) =
φQq̄ (x, k⊥)√

mQ
. (28)

The scaling behavior of (28) is the constraint of the light-
front wavefunction when we consider the infinite quark
mass limit. For the Gaussian-type wavefunction (12), it
satisfies the asymptotic form

Φ(X, k⊥)G = 4
( π
ω2

)3/4
exp

(
− k2

⊥
2ω2

)
(29)

× exp

−

(
X

2
− m2

q̄ + k2
⊥

2X

)2

2ω2


√

1
2
+
m2

q̄ + k2
⊥

2X2 .
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Thus we can use this wavefunction when the heavy quark
limit is considered.

In themM ,mQ → ∞ limit it is appropriate to describe
the meson state with the meson velocity v [16]:

|M(v)〉 = m
−1/2
M |M(P )〉, (30)

where v = P/mM . For the decay constant, the definition
(16) becomes

〈0|q̄γµγ5Q|P (v)〉 = if̄P vµ, (31)

and in the mQ → ∞ limit it is

f̄P = 4
√
3√
2

∫
dXd2k⊥
2(2π)3

Φ(X, k⊥)
Ã√

Ã2 + k2
⊥
, (32)

where Ã ≡ X+mq̄2 . Comparing (32) with (18), we obtain
the HQS scaling law for the decay constant:

f̄P =
√
mMfP . (33)

For the mean square radius (26), when the heavy quark
limit is considered, we obtain

〈r2〉P = 〈r2〉Q + 〈r2〉q̄2 , (34)

where

〈r2〉Q = eQ

{
−6
m2

Q

∫
dXd2k⊥
2(2π)3

X2Φ̃

[
(Ã2 + 2k2

⊥)
d

dk2
⊥

+ (Ã2 + k2
⊥)k

2
⊥

(
d

dk2
⊥

)2
]
Φ̃

}
→ 0, (35)

〈r2〉q̄2 = eq̄2

{
−6
∫

dXd2k⊥
2(2π)3

Φ̃

[
(Ã2 + 2k2

⊥)
d

dk2
⊥

+ (Ã2 + k2
⊥)k

2
⊥

(
d

dk2
⊥

)2
]
Φ̃

}
, (36)

and Φ̃ = Φ/(Ã2 + k2
⊥)

1/2. Equation (35) means that the
mean square radius 〈r2〉P is blind to the flavor of Q. This
is the so-called flavor symmetry. We find that the light de-
grees of freedom are blind to the flavor of the heavy quark.
In addition, [27] finds the mean square radius also satis-
fied the spin symmetry. These are the so-called HQS. Up
to now, we have not used the wavefunction yet; this also
satisfies the well-known property that HQS is model inde-
pendent. Reviewing the processes, we may realize that, in
this approach, the static properties of the EM form fac-
tors and the heavy quark symmetry of the mean square
radii can be checked much more easily than in the Breit
frame. This is the major reason why we calculate the Q2

dependence of those form factors order by order.
We must emphasized here that, in the mQ → ∞ limit,

the vanishing of the heavy quark sector in the form fac-
tor is true only for the Q2 → 0 region. In the time-like
region, near the threshold for the meson pair production
the heavy quark sector is dominant and described by the
Isgur–Wise function [28].
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Fig. 1. The charge form factor of the pion in small momentum
transfer. Data are taken from [1]

4 Numerical results

In this section, we will use the Gaussian-type wavefunction
(12) to calculate the EM form factors and the mean square
radius. The parameters appearing in the wavefunction, the
quark massmq and the scale parameter ω, are constrained
by the decay constants.

The decay constants of the pseudoscalar mesons π and
K come from experiments [29]

fπ = 130.7MeV, fK = 159.8MeV; (37)

the others are obtained by lattice and constituent quark
model:

fD = 192MeV[30], fDs = 210MeV[30],
fB = 157MeV[30], fBs = 171MeV[30],
fBc = 360MeV[31]. (38)

Combining with the quark masses

mu,d = 0.24GeV, ms −mu,d = 0.18GeV,
mc = 1.6GeV, mb = 4.8GeV, (39)

we fit the scale parameters

ωπ = 0.333GeV, ωK = 0.379GeV,
ωD = 0.443GeV, ωDs = 0.450GeV,
ωB = 0.477GeV, ωBs

= 0.485GeV,
ωBc = 0.813GeV. (40)

There are differences between these parameters and the
ones in [31] because the wavefunctions in the two cases are
not the same. However, they have a common tendency:
that ωMi < ωMj if Mi < Mj . This corresponds to the
ordering law for the size of heavy-light bound states.

The Q2-dependences of Fπ and FK can be obtained by
(20), and we compare the results with the data in Figs. 1
and 2, respectively. In addition, the mean square radii of
the pseudoscalar meson can be obtained by (26). We list
the results of 〈r2〉π+,K+,K0 and the experimental data in
Table 1 (the unit is fm2).
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Fig. 2. The charge form factor of the kaon in small momentum
transfer. Data are taken from [5]

Table 1. The mean square radii of the π+, K+, and K0 mesons

〈r2〉 π+ K+ K0

this work 0.443 0.349 −0.0676
[11] 0.314 0.240 −0.020
[13] 0.452 0.38 0.057
experiment 0.439 ± 0.008 [1] 0.34 ± 0.05 [5] −0.054 ± 0.026 [7]

Table 2. The mean square radii of the heavy pseudoscalar
mesons for the finite quark masses 〈r2〉FM and for the infinite
quark masses 〈r2〉IM

D+ D0 D+
s B+ B0 B0

s B+
c

〈r2〉FM 0.184 −0.304 0.124 0.378 −0.187 −0.119 0.0433

〈r2〉IM 0.248 −0.496 0.181 0.496 −0.248 −0.181

The negative signs in Table 1 are interesting and may
be interpreted as the preponderance of negative electric
charge in the tail of the distribution. We find that these
values are all consistent with the data. Comparing with
[8], they also used the light-front approach. There were
various parameter combinations to fit the data of Fπ for
both small and large momentum transfers.

According to the vector meson dominance (VMD)
model [12], there is a physical explanation: the pion form
factor is determined by a ρ-meson pole. Generally speak-
ing, this simple picture fits the data well. A detailed study
[13] obtained a better fit when one considers the ρ–ω mix-
ing and three vector meson (ρ, ω, and φ) poles to the pion
and kaon form factors, respectively.

On the other hand, the mean square radii of the heavy
pseudoscalar meson have not been measured yet. For com-
parison, here we define and calculate them as 〈r2〉FM for
the finite quark masses and as 〈r2〉IM for the infinite quark
masses. In the case of the infinite quark masses, the decay
constant f̄P cannot be measured in the true world, so we
obtain it approximately by using the values fB = 157MeV
and mB = 5.28GeV in (33). The results are listed in Ta-
ble 2.

From Table 2, we cannot obviously find the situation
that, comparing with the values in theDq system, the ones
in the Bq system are closer to those in the infinite quark
mass system. The reason is that the 〈r2〉 is sensitive to the
fP , but the uncertainty of the decay constant is not small.
In fact, if we use the most recent value, fDs = 280MeV
[32], the result 〈r2〉D+

s
= 0.083 fm2 is quite different from

the one in Table 2. For the Bc-meson, the 〈r2〉IM are not
given here because both b and c quarks are heavy. The
HQS must be reconsidered in this case.

5 Conclusion

We have calculated the EM form factors of the pseu-
doscalar mesons. The EM form factors are extracted from
the relevant matrix elements directly, instead of choosing
the Breit frame. We found that the charge radius is re-
lated to both the first and second longitudinal momentum
square derivatives of the momentum distribution function.
We also found that the static properties of the EM form
factors and the heavy flavor symmetry of the mean square
radii are checked analytically by evaluating the Q2 depen-
dence of those form factors order by order. Therefore, in
the heavy quark limit, the charge radii of pseudoscalar
have flavor symmetries, and these properties are model
independent. In addition, the Q2-dependences of the form
factors Fπ,K and the mean square radius of light and heavy
mesons have been calculated by using the Gaussian-type
wavefunction. The form factors Fπ and FK in small mo-
mentum transfer and the values of 〈r2〉π+,K+,K0 are all
consistent with the current experimental data.
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